close
Search

2023 Kawasaki NINJA® 650 KRT EDITION

2023 Kawasaki NINJA® 650 KRT EDITION
LIME GREEN/EBONY ABS
MSRP: $8,599.00
Manufacturer: Kawasaki
Condition: New

Specifications

POWER

Engine
4-stroke, Parallel Twin, DOHC, 8-valve, liquid cooled
Displacement
649cc
Bore x Stroke
83.0 x 60.0mm
Compression Ratio
10.8:1
Fuel System
DFI® with dual 36mm Keihin throttle bodies
Ignition
TCBI with electronic advance
Transmission
6-speed
Final Drive
Sealed chain
Electronic Rider Aids
Kawasaki TRaction Control (KTRC - 2 Modes), ABS
 

PERFORMANCE

Front Suspension / Wheel Travel
41mm hydraulic telescopic fork/4.9 in
Rear Suspension / Wheel Travel
Horizontal back-link with adjustable spring preload/5.1 in
Front Tire
120/70x17
Rear Tire
160/60x17
Front Brakes
Dual 300mm petal-type discs and 2-piston calipers (and ABS)
Rear Brakes
Single 220mm petal-type disc and single-piston caliper (and ABS)
 

DETAILS

Frame Type
Trellis, high-tensile steel
Rake/Trail
24.0°/3.9 in
Overall Length
80.9 in
Overall Width
29.1 in
Overall Height
45.1 in
Ground Clearance
5.1 in
Seat Height
31.1 in
Curb Weight
NON ABS: 419.0 lb / ABS: 423.4 lb*
Fuel Capacity
4.0 gal
Wheelbase
55.5 in
Color Choices
Lime Green/Ebony
Warranty
12 Month Limited Warranty
Kawasaki Protection Plus™ (optional)
12, 24, 36 or 48 months
 

Features

TECHNOLOGY

  • Based on feedback from racing activities, the Assist & Slipper Clutch uses two types of cams (an assist cam and a slipper cam) to either drive the clutch hub and operating plate together or apart. Under normal operation, the assist cam functions as a self-servo mechanism, pulling the clutch hub and operating plate together to compress the clutch plates. This allows the total clutch spring load to be reduced, resulting in a lighter clutch lever feel when operating the clutch. When excessive engine braking occurs – as a result of quick downshifts (or an accidental downshift) – the slipper cam comes into play, forcing the clutch hub and operating plate apart. This relieves pressure on the clutch plates to reduce back-torque and helps prevent the rear tire from hopping and skidding. This race-style function is particularly useful when sport or track riding.
  • Late-model sport bikes often use large-bore throttle bodies to generate high levels of power. However, with large diameter throttles, when a rider suddenly opens the throttle, the unrestricted torque response can be strong. Dual throttle valve technology was designed to tame engine response while contributing to performance. On models with dual throttle valves, there are two throttle valves per cylinder: in addition to the main valves, which are physically linked to the throttle grip and controlled by the rider, a second set of valves, opened and closed by the ECU, precisely regulates intake airflow to ensure a natural, linear response. With the air passing through the throttle bodies becoming smoother, combustion efficiency is improved and power is increased.
  • Using high-precision electronic control for engine management, Kawasaki models can achieve a high level of fuel efficiency. However, fuel consumption is greatly affected by throttle use, gear selection, and other elements under the rider's control. The Economical Riding Indicator is a function that indicates when current riding conditions are consuming a low amount of fuel. The system continuously monitors fuel consumption, regardless of vehicle speed, engine speed, throttle position and other riding conditions. When fuel consumption is low for a given speed (i.e. fuel efficiency is high), an "ECO" mark appears on the instrument panel's LCD screen. By riding so that the "ECO" mark remains on, fuel consumption can be reduced. While effective vehicle speed and engine speed may vary by model, paying attention to conditions that cause the "ECO" mark to appear can help riders improve their fuel efficiency – a handy way to increase cruising range. Further, keeping fuel consumption low also helps minimize negative impact on the environment.
  • KTRC, Kawasaki's advanced traction control system provides both enhanced sport riding performance and the peace of mind to negotiate slippery surfaces with confidence. Multiple rider-selectable modes (the number of modes varies by model) offer progressively greater levels of intrusion to suit the riding situation and rider preference. Less intrusive modes maintain optimum traction during cornering. Designed with sport riding in mind, they facilitate acceleration out of corners by maximizing forward drive from the rear wheel. And because Kawasaki’s sophisticated software bases its dynamic analysis on the chassis’ orientation relative to the track surface (rather than relative to a horizontal plane), it is able to take into account corner camber, gradient, etc., and adapt accordingly. In the more intrusive modes (and for some models, in any mode), when excessive wheel spin is detected, engine output is reduced to allow grip to be regained, effectively enabling riders to negotiate both short, slippery patches (train tracks or manhole covers) and extended stretches of bad roads (wet pavement, cobblestone, gravel) with confidence. Models equipped with IMU incorporate chassis-orientation feedback to offer even more precise management.
  • Kawasaki ABS systems use front and rear wheel sensors to constantly monitor wheel speed. Should information from either of the sensors indicate that wheel lock has occurred, the ABS ECU directs the pump in the ABS unit to modulate brake fluid pressure (releasing and reapplying pressure so that traction can be regained) until normal operation resumes. ABS offers rider reassurance that contributes to greater riding enjoyment.
  • Compared to the Kawasaki traditional Uni-Trak® rear suspension, which mounts the shock unit vertically, with Horizontal Back-link Rear Suspension, the shock unit is almost horizontal. The original Kawasaki suspension arrangement locates the shock unit very close to the bike's center of gravity, greatly contributing to mass centralization. And because there is no linkage or shock unit protruding beneath the swingarm, this frees up space for a larger exhaust pre-chamber (an exhaust expansion chamber situated just upstream of the silencer). With a larger pre-chamber, silencer volume can be reduced, and heavy exhaust components can be concentrated closer to the center of the bike, further contributing to mass centralization. The result is greatly improved handling. A secondary benefit is that the shock unit is placed far away from exhaust heat. Because it is more difficult for heat from the exhaust system to adversely affect suspension oil and gas pressure, suspension performance is more consistent.

All inventory listed is subject to availability and prior sale. Manufacturer's Suggested Retail Price (MSRP) if shown for a vehicle excludes set-up, freight, taxes, title, licensing or other dealer charges, and is subject to change. Individual prices may vary. Please request a quote for specific pricing.

Request Quote or More Information








Get the OEM Parts AppFREE
The power to find and order OEM parts at your fingertips: simple, fast, and convenient!
OEM Parts App IOS OEM Parts App Google Play
OEM Parts App
mastercard visa amex discover usps fedex